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Abstract. The behavior of complex networks under failure or attack depends strongly on the specific
scenario. Of special interest are scale-free networks, which are usually seen as robust under random failure
but appear to be especially vulnerable to targeted attacks. In recent studies of public transport networks
of fourteen major cities of the world it was shown that these systems when represented by appropriate
graphs may exhibit scale-free behavior [Physica A 380, 585 (2007); Eur. Phys. J. B 68, 261 (2009)]. Our
present analysis focuses on the effects that defunct or removed nodes have on the properties of public
transport networks. Simulating different directed attack strategies, we derive vulnerability criteria that
result in minimal strategies with high impact on these systems.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics — 07.05.Rm Data presentation and
visualization: algorithms and implementation — 89.75.Hc Networks and genealogical trees

1 Introduction

The question of resilience or vulnerability of a complex
network [1] against failure of its parts has, beside purely
academic interest a whole range of important practical im-
plications. In what follows below any such failure will be
called an attack. In practice, the origin of the attack and
its scenario may differ to large extent, ranging from ran-
dom failure, when a node or a link in a network is removed
at random to a targeted destruction, when the most in-
fluential network constituents are removed according to
their operating characteristics. The notion of attack vul-
nerability of complex networks originates from studies of
computer networks and was coined to denote the decrease
of network performance as caused by the removal of either
nodes or links. The behavior of a complex network under
attack has been observed to drastically differ from that of
regular lattices. Early evidence of this fact was found in
particular for real world networks that show scale-free be-
havior: the world wide web and the internet [2,3], as well
as metabolic [4], food web [5], and protein [6] networks. It
appeared that these networks display a high degree of ro-
bustness against random failure. However, if the scenario
is changed towards targeted attacks, the same networks
may appear to be especially vulnerable [7,8].

Essential progress towards a theoretical description of
the attack vulnerability of complex networks is due to the
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application of the tools and concepts of percolation phe-
nomena [9]. On a lattice percolation occurs e.g. when at a
given concentration of bonds a spanning cluster appears.
This concentration cpere Which is determined by an ap-
propriate ensemble average in the thermodynamic limit
is the so-called percolation threshold which is in general
lattice dependent. On a general network the correspond-
ing phenomenon is the emergence of a giant connected
component (GCC) i.e. a connected subnetwork which in
the limit of an infinite network contains a finite fraction
of the network. For a random graph where given vertices
are linked at random this threshold has been shown to be
reached at one bond per vertex [10]. However the distri-
bution p(k) of the degrees k of vertices in a random graph
is Poissonian. A more general criterion applicable to net-
works with given degree distribution p(k) but otherwise
random linking between vertices has been proposed by
Molloy and Reed [7,8,11]. For such equilibrium networks
a GCC can be shown to be present if

(k(k—=2)) =0 (1)

with the appropriate ensemble average (... ) over networks
with given degree distribution. Defining the Molloy-Reed
parameter as the ratio of the moments of the degree
distribution

R = (k) / (k) (2)
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the percolation threshold can then be determined by

Cpere: (3)

Taken that for scale-free networks the degree distribution
obeys power law scaling

p(k) ~ k™7 (4)

KK =2  at

one finds that the second moment (k?) diverges for v < 3.
Thus, the value v = 3 separates two different regimes for
the percolation on equilibrium scale free networks [7]. In-
deed, for infinite equilibrium scale-free networks x(*) (2)
remains finite for v > 3, however for v < 3 a GCC is found
to exist at any concentration of removed sites: the net-
work appears to be extremely robust to random removal of
nodes. Therefore, observed transitions for real-world sys-
tems [2-6] from the theoretical standpoint may be seen as
finite-size effects or resulting from essential degree-degree
correlations. The tolerance of scale-free networks to in-
tentional attacks (when the highest degree nodes are re-
moved) was studied in reference [12]. It was shown that
even networks with v < 3 may be sensitive to intentional
attacks.

Obviously, the above theoretical results apply to ideal
complex networks and for ensemble averages and may
be confirmed within certain accuracy when applied to
different individual real-world networks. Not only finite-
size effects are the origin of this discrepancy [13]. Fur-
thermore, even networks of similar type (e.g. of similar
node degree distribution and size) may be characterized
by a large variety of other characteristics. While some
of them may have no impact on the percolation prop-
erties [14], others do modify their behavior under attack,
as empirically revealed in reference [15] for two different
real-world scale-free networks (computer and collabora-
tion networks). Therefore, an empirical analysis of the
behavior of different real-world networks under attack ap-
pears timely and will allow not only to elaborate scenarios
for possible defense mechanisms of operating networks but
also to create strategies of network constructions, that are
robust to attacks of various types.

In this paper, we present results of the analysis of the
behavior of networks of public transport in large cities
(public transport networks, PTNs) and consider attacks
by various scenarios. To our knowledge the resilience of
PTNs under attack has so far not been treated in terms
of complex network concepts. Furthermore, in parallel we
analyze a number of complex networks of the same type.
Previous analysis usually focused on a single instance of
a network of given type [16]. Our study intends to show
that even within a sample of several networks that were
created for the same purpose, namely PTNs, one may ob-
serve essential diversity with respect to the behavior under
attacks of various scenarios.

As we have mentioned above, the attack resilience of
a network may be tested within a variety of different at-
tack scenarios. In a given one, a list of nodes ordered by
decreasing degree may be prepared for the unperturbed
network and the attack successively removes vertices ac-
cording to this original list [17,18]. In a slightly different
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scenario the vertex degrees are recalculated and the list
is reordered after each removal step [2]. In initial stud-
ies only little difference between these two scenarios was
observed [8], however further analysis showed [15,19] that
attacks according to recalculated lists often turn out to
be more harmful than the attack strategies based on the
initial list, suggesting that the network structure changes
as important vertices or edges are removed. Other scenar-
ios consider attacks following an order imposed by other
measures of the centrality of a node, e.g. the so-called be-
tweenness centrality [15]. In particular for the world-wide
airport network, it has been shown recently [20,21] that
nodes with higher betweenness play a more important role
in keeping the network connected than those with high
degree. In our study, we will make use of the scenarios
proposed so far as well as develop further algorithms to
perform network attacks. Furthermore, we investigate the
variation of the results with respect to specific instances
of random failure.

The paper is organized as follows, in the next Sec-
tion we describe the database, define observables in terms
of which we are going to follow the changes in the net-
work properties under attacks, and describe the different
attack strategies we will use. We display our principal re-
sults in Sections 3, 4. There, we formulate criteria that
allow to estimate the resilience of networks against at-
tacks and discuss behavior of the PTNs during attacks
following different strategies, outlining the most effective
ones. Conclusions and an outlook are given in Section 5.

2 Databases, observables, and attack
strategies

This study continues our analysis of the properties of
PTNs initiated in references [22-24]. As in these works,
we rely on the publicly available information about PTNs
of a set of fourteen major cities of the world [25]. Our
choice for the selection of these cities was motivated by
the idea to collect network samples from cities of differ-
ent geographical, cultural, and economical background. In
Table 1 we give some information summarizing the empir-
ical analysis of some of the properties of the PTNs under
consideration.

There are various ways to represent a PTN in terms
of a graph [26]. These different representations allow for a
comprehensive analysis of various PTN properties reflect-
ing their operating functions. It is natural to perform the
analysis of PTN attack resilience in terms of these repre-
sentations. These are briefly summarized in Figure 1. For
the purpose of the present analysis, we will make use of
the so-called IL and IP-space graphs. In IL-space represen-
tation [26] the PTN is represented by a graph with nodes
that correspond to the stations, whereas links correspond
to connections between stations within one stop distance
(Fig. 1b). In the PP-space [27] all station-nodes that belong
to the same route form of a complete subgraph of the net-
work (Fig. 1c).

Let us take the IL-space representation to introduce
the observables we will use to quantify the PTN behavior
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Fig. 1. (Color online) (a) a simple public transport map. Stations A-F are serviced by routes No. 1 (shaded orange), No. 2
(white), and No. 3 (dark blue). (b) L-space graph. (¢) P-space graph, the complete sub-graph corresponding to route No. 1 is

highlighted (shaded orange).

Table 1.

Some characteristics of the PTNs analyzed in this study. Types of transport taken into account: Bus, Electric

trolleybus, Ferry, Subway, Tram, Urban train; N: number of stations; R: number of routes. The following characteristics are
given in IL- and P-spaces, as indicated by the subscripts: (k) (mean node degree); £***, (£) (maximal and mean shortest path
length); ¢ (ratio of the mean clustering coefficient to that of the classical random graph of equal size); k3 k* (cf. Egs. (2),
(14)); v (exponent in the power law (4) fit, bracketed values indicate less reliable fits, see text). More data is given in [23].

City Type N R (kL) £ (fL) cL Ky K](Lk) o (kp) 3™ (bp) cp K](PZ) K](Pk) vp

Berlin BSTU 2992 211 2.58 68 185 52.8 1.96 3.16 (4.30) 56.61 5 2.9 419 11.47 84.51 (5.85)
Dallas B 5366 117 2.18 156 52.0 55.0 1.28 2.35 549 100.58 8 3.2 48.6 11.23 145.65 (4.67)
Diisseldorf BST 1494 124 2.57 48 125 24.4 1.96 3.16 3.76 59.01 5 2.6 19.7 10.56 91.17 (4.62)
Hamburg BFSTU 8084 708 2.65 156 39.7 254.7 1.85 3.26 (4.74) 50.38 11 4.7 1322 7.96 79.43 4.38
Hong Kong B 2024 321 3.59 60 11.0 60.3 3.24 5.34 (2.99) 125.67 4 2.2 11.7 10.20 232.73 (4.40)
Istanbul BST 4043 414 2.30 131 29.7 41.0 1.54 2.69 4.04 76.88 6 3.1 41.5 10.59 140.13 (2.70)
London BST 10937 922 2.60 107 26.5 320.6 1.87 3.22 4.48 90.60 3.3 90.0 16.94 166.95 3.89
Los Angeles B 44629 1881 2.37 210 37.1 645.3 1.59 2.73 4.85 9799 11 4.4 399.6 17.21 159.86 3.92
Moscow BEST 3569 679 3.32 27 7.0 1274 6.25 7.91 (3.22) 65.47 5 2.5 38.0 26.48 130.65 (2.91)
Paris BS 3728 251 3.73 28 6.4 785 532 6.93 2.62 50.92 5 2.7 59.6 24.06 88.89 3.70
Rome BT 3961 681 295 87 26.4 163.4 2.02 3.67 (3.95) 69.05 6 3.1 41.4 11.34 108.08 (5.02)
Sao Paolo B 7215 997 3.21 33 10.3 268.0 4.17 5.95 2.72 137.46 5 2.7 38.2 19.61 333.73 (4.06)
Sydney B 1978 596 3.33 34 12.3 829 2.54 4.37 (4.03) 42.88 7 30 336 7.79 74.63 (5.66)
Taipei B 5311 389 3.12 74 20.9 186.2 2.42 4.02 (3.74) 236.65 6 2.4 154 12.96 415.46 (5.16)

under attack. Keep in mind however, that in our analysis
presented in Section 3 we will deal also with the P-space.
There are two intrinsically connected questions that natu-
rally arise when one wants to describe quantitatively how
a certain network changes when its nodes are removed.

In the following we will only consider the removal of
nodes. Along the lines of the lattice site percolation prob-
lem the removal of a node implies the removal of all links
that this node contributed to the network. Thus, in terms
of the PTN this interrupts all routes that pass through
the corresponding station splitting any such route into
two independent parts. No ‘detour’ links will be inserted
to reconnect these routes. This may reflect e.g. an instance
where a tram or subway station becomes blocked.

The first question is how to choose the ‘order-
parameter’ variable that signals the quantitative change in
the network behavior (i.e. the break down of the network),
the second is how to locate the value of concentration of
removed nodes at which this change occurs. As we have
mentioned in the introduction, in a theoretical description
a useful quantity is the GCC: its disappearance can be as-
sociated with a network breakdown. Strictly speaking, the

GCC is well-defined only in the N — oo limit, therefore in
practice dealing with a network of a finite size IV it is sub-
stituted by the size of the largest connected component.
We will use in the following its normalized value defined
by:

S = N;/N, (5)

with N and N7 being number of nodes of the network and
of its largest component correspondingly. By definition
(5), a largest component is always present in a network
of non-zero size. A useful quantity to measure network
connectivity is the average shortest path:

2 .
() = mzf(ld% (6)
1>

where ¢(i, 7) is the length of a shortest path from node ¢
to j and the sum spans all pairs 4, j of sites of the network.
However, (¢) is ill-defined for a disconnected network.
Alternatively, one can suitably define the mean inverse
shortest path length [15] by:

(1) = 7N(N2_ > ), (7)

i>7
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Fig. 2. (Color online) L-space. Random scenario. Size of the largest cluster S (a) and the average inverse mean shortest path
length (£7') (b) as functions of the fraction of removed nodes ¢ normalized by their values at ¢ = 0.

with £71(i, j) = 0 if nodes i, j are disconnected. As one can
see, equation (7) is well-defined even for a disconnected
network and as such can be used to trace changes of net-
work behavior under attack. To give an example, we show
in Figure 2 how the largest component fraction S, equa-
tion (5) and the mean inverse shortest path length (/=1),
equation (7), change upon random removal of nodes in
each of fourteen PTNs selected for our study. More pre-
cisely, we measure these quantities as functions of the frac-
tion of removed nodes ¢ starting from the unperturbed
network (¢ = 0) and eliminating at random step-by-step
1% of the nodes up to ¢ = 1. In what follows below we
will call this scenario a random scenario.

Note, that in Figure 2 we display the result of a specific
random attack. We have however verified that random
permutations do not influence the results to extents that
were visible on the scale of Figure 2. This question will be
further investigated in more detail within the discussion
of Figure 8 below.

Already this first attack attempt brings about inter-
esting (and in part unexpected) PTN features. Namely:

(i) different PTNs react on random removal of their
nodes in different ways, that range from rapid abrupt
breakdown (Dallas) to a slow almost linear decrease
(Paris);

(ii) although qualitatively similar, the observed impact of
the attack differs depending on which variable is used
as indicator, either S or (¢(~1). Ordering the PTNs by
their vulnerability, this order may thus differ depend-
ing on the applied indicator;

(iii) up to ¢ = 1, there is no general 'percolation thresh-
old’ concentration of removed nodes ¢ at which S (or
(£=1)) vanishes that would hold for all PTNs. Rather
for some individual PTNs one observes various val-
ues of ¢ at which these PTNs show abrupt changes of
their properties.

Figures 2a, 2b display how the different PTNs react on
a random removal of their nodes. Obviously, the question

immediately arises how this behavior changes if one re-
moves the nodes not at random, but following a given or-
der or scheme (we call this the scenario of the attack). As
we have mentioned in the introduction, a number of differ-
ent attack scenarios have been proposed [2,8,15,17-21,24].
These are generally based on the intuitive assumption that
the largest impact on a network is caused by the removal
of its most ‘important’ nodes. A number of indicators have
been developed in particular in applications of graph the-
ory for social science to measure the importance of a node.
Besides the node degree kj;, which is equivalent to the
number of nearest neighbors z1 () of a given node j, differ-
ent centralities have been introduced for this purpose. In
particular, the closeness Co(j), graph C(7), stress Cs(5),
and betweenness centralities Cg(j) of a node j are defined
as follows (see e.g. [28]):

. 1
CC(J):ma (8)
Cc(j)zma 9)
Cs(i)= >, ouli) (10)
s#JFtEN
o)=Y U (1)
stjAteN 5t

In equations (8)—(11), £(j,t) is the length of a shortest
path between the nodes j,t that belong to the network
N, o4 is the number of shortest paths between the two
nodes s,t € N, and o4 (j) is the number of shortest paths
between nodes s and t that go through the node j. Alter-
natively, one may measure the importance of a given node
j by the number of its second nearest neighbors z(j) or
its clustering coefficient C'(j). The latter is the ratio of the
number of links F; between the k; nearest neighbors of j
and the maximal possible number of mutual links between
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Fig. 3. (Color online) Largest component size of the PTN of
Paris as function of the fraction of removed nodes for different
attack scenarios. Each curve corresponds to a different sce-
nario as indicated in the legend. Lists of removed nodes were
prepared according to their degree k, closeness Cc, graph Cg,
stress Cs, and betweenness Cp centralities, clustering coeffi-
cient C, and next nearest neighbors number z2. A superscript
i refers to lists prepared for the initial PTN before the attack.
RV and RN denote the removal of a random vertex (RV) or of
its randomly chosen neighbor (RN), respectively.

them: o
ClH) = o (12)
kj(kj —1)
Removing important nodes according to lists pre-

pared in the order of decreasing node degrees k,
centralities (8)—(11), number of their second nearest
neighbors z,, and increasing clustering coefficient C' de-
fines seven different attack scenarios. As we have already
mentioned in the introduction, the scenarios can be ei-
ther implemented according to lists prepared for the ini-
tial PTN before the attacks (we will indicate the corre-
sponding scenario by a superscript i, e.g. C%) or by lists
rebuilt by recalculating the order of the remaining nodes
after each step. Together, this leads to fourteen different
attack scenarios. In addition, we will keep the above de-
scribed random scenario (denoted further as RV) and add
one scenario more, removing a randomly chosen neighbor
of a randomly chosen node (RN). The latter scenario ap-
pears to be effective for immunization problems [29] and
it is based on the fact, that in this way nodes with a high
number of neighbors will be selected with higher proba-
bility. Note that in this scenario only a neighbor node is
removed and not the initially chosen one.

All together, this defines sixteen different scenarios to
attack a network and we apply these to all fourteen PTNs
that form our database. A typical result for a single PTN
is displayed in Figure 3. Here, we show how the largest
connected component size S of the Paris PTN changes
under the influence of the above described attack scenar-
ios. Already from this plot one may discriminate between
the most effective scenarios that result in a fast decrease
of the largest component size (those governed by between-
ness and stress centralities, node degree, and next nearest
neighbors number — see the figure) and the less harmful
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ones. In the following, instead of displaying the results of
all attacks for all different PTNs we will focus on the re-
sults of the most effective scenarios comparing them with
those of random failure as introduced by the random sce-
nario. As outlined in the introduction, we make use of dif-
ferent PTN representations (different ‘spaces’ of Fig. 1).
In the following section, we present the analysis of PTN
resilience in the IL-space representation.

3 Results in IL-space

The IL-space representation of a PTN is a graph that rep-
resents each station by a node, a link between nodes indi-
cates that there is at least one route that services the two
corresponding stations consecutively. No multiple links are
allowed (see Fig. 1b). Therefore, attacks in the L-space
correspond to situations, in which given public transport
stations cease to operate for all means of traffic that go
through them. Note however, that in this representation,
the removal of a station node does not otherwise interfere
with the operation of a route that includes this station.
It rather splits this route into two (operating) pieces. An
alternative situation will be considered in Section 4.

In order to answer some of the questions raised in Sec-
tion 2, let us return to Figure 3, where the impact on the
largest component size S of the PTN of Paris is shown
for sixteen different attack scenarios as function of the
fraction of removed nodes. As we have already remarked,
for this PTN the most influential are the scenarios where
nodes are removed according to lists ordered by Cg, k,
Cs, k', C%, C% (we list the characteristics in decreasing
order of effectiveness of the corresponding scenario). For
a small value of ¢ (¢ < 0.07) these scenarios cause practi-
cally indistinguishable impact on S with a linear behavior
S ~ (1 —c). As c increases, deviations from the linear be-
havior arise and the impact of different scenarios starts to
vary. In particular, there appear differences between the
role played by the nodes with highest value of k£ and high-
est betweenness centrality Cg. Whereas the first quantity
is a local one, i.e. it is calculated from properties of the
immediate environment of each node, the second one is
global. Moreover, the k-based strategy aims to remove a
maximal number of edges whereas the C'g-based strategy
aims to cut as many shortest paths as possible. In addi-
tion, there arise differences between the ‘initial’ and ‘recal-
culated’ scenarios, suggesting that the network structure
changes as important nodes are removed. Similar behav-
ior of S(c) is observed for all PTNs included in this study,
with certain peculiarities in the order of effectiveness of
different attack scenarios. Note however, that the differ-
ence between ‘initial’ and ‘recalculated’ scenarios is less
evident for strategies based on local characteristics, as e.g.
the node degree or the number of second nearest neigh-
bors (cf. curves for k, k' and 2y, 24, respectively). This
difference between initial and recalculated characteristics
is more pronounced for the centrality-based scenarios.

Now let us return to some of the observations of Sec-
tion 2. Namely, we noted that the observed impact of an
attack may differ depending on which observable is used
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Fig. 4. (Color online) L-space. Recalculated highest degree scenario. (a) Behavior of the maximal shortest path fmax for the
PTNs of Paris and London. Note the characteristic peaks that occur at ¢ = 0.13 (Paris) and ¢ = 0.06 (London). (b) Size of
largest connected cluster S as function of the fraction of removed nodes for the same networks. The arrows indicate the values

of ¢ at which the peak for £nax appears.

as the ‘order-parameter’ variable (cf. Fig. 2 where this is
shown for the RV attack scenario taking either S or (/1)
as ‘order-parameter’). Similar differences we observe also
in the case of the other scenarios. For the sake of unique-
ness in the following we will use the value of S to measure
the effectiveness of a given attack. This choice is moti-
vated by several reasons: (i) in an infinite network limit
S defines an order parameter of the classical percolation
problem [9]; (ii) differences between network resilience as
judged e.g. by the behavior of S or by that of ((~!) are
not significant enough to be a subject of special analysis
(at least not for the PTNs we consider); (iii) considering S
naturally leads to other useful characteristics that allow to
estimate the PTN operating ability and its segmentation.
Let us stop to elaborate the latter point in more detail.

As we have already emphasized, there is no well defined
‘percolation threshold’ concentration of removed nodes
Cpere at which S (or (¢71)) vanishes (see Figs. 2, 3) which
could serve as evidence of a break down of the largest
PTN component and hence of the loss of operating abil-
ity [30]. In reference [24] it has been proposed to use the
behavior of maximal shortest path length /..« as a possi-
ble indicator of the network break down. This was based
on the observation, that as the concentration of removed
nodes ¢ increases, the value of £, for different PTNs
displays similar typical behavior: initial growth and then
an abrupt decrease when a certain threshold is reached
(see e.g. Fig. 4a where this value is shown for the recalcu-
lated highest degree attack scenario of the PTNs of Paris
and London). Obviously, removing the nodes initially in-
creases the path lengths as deviations from the original
shortest paths need to be taken into account. Further re-
moving nodes then at some point leads to the breakup
of the network into smaller components on which the
paths are naturally limited by the size of these compo-
nents which explains the sudden decrease of their lengths.
For comparison, in Figure 4b we show how the value of S

changes under the recalculated highest degree scenario for
the above PTNs.

Being certainly useful for many instances of the PTNs
analyzed, the above £,.x-based criterion cannot serve as
an universal tool to determine the region of ¢, where the
network stops to operate. One of the reasons is that for
certain PTNs (as well as for certain attack scenarios) we
have found that ¢, does not show a pronounced maxi-
mum, but rather shows several maxima at different values
of ¢. Therefore, to devise a criterion which may be equally
well used for any of the networks we decided to define
characteristic concentration of removed nodes ¢ at which
the size of the largest component S decreases to one half
of its initial value. This characteristic concentration al-
lows us to compare the effective robustness of different
PTNs or of the same PTN when different attack scenar-
ios are applied. In what follows below, we will call this
concentration the segmentation concentration cg, with the
obvious condition:

1

S(es) = 58(0 =0). (13)
In Figure 5 we plot the size of the largest connected com-
ponent S for different PTNs as function of the fraction of
removed nodes ¢ for the random vertex scenario (RV) in
L-space. The choice of the lowest S value S = 1/2 in this
figure enables one to find the value ¢4 as the crossing point
of S(c) with the horizontal axis. The values of ¢ obtained
for this scenario are given in the last column of Table 2.
Note that the PTNs under consideration react on ran-
dom attack in many different ways: some of them slowly
decrease without any abrupt change in S (like PTNs of
Paris, Moscow, Sydney) while others are characterized by
a rather fast decay of S (Dallas, Los Angeles, Istanbul).

Now, applying these attacks according to the six-
teen scenarios described above we are in the position to
discriminate them by their degree of destruction and to
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Segmentation concentration cs for different attack scenarios applied to different PTNs. For each city, the table

displays the results of the five most destructive attack scenarios ordered by increasing values of ¢s. The scenario is indicated
after corresponding value of cs. The scenarios are abbreviated by the name of the characteristics used to prepare the lists of
removed nodes (see Sect. 2 for detailed explanation). In the last column the value of ¢ for the random scenario (RV) is shown.

City Cs Cs Cs Cs Cs Cs
Berlin 0.060 Cp 0.065 k' 0065 Cs 0.070 k 0.075 z2 0.220 RV
Dallas 0.025 k' 0.030 Kk 0030 Cp 0045 2z 0.055 z5  0.090 RV
Diisseldorf 0.075 Cp 0.080 k 0.080 K 0.095 Cs 0.105 22 0.240 RV
Hamburg 0.040 Cp 0.040 Cc 0.045 Cs 0.045 k' 0.060 z2 0.150 RV
Hong Kong 0.030 Cp 0040 Cc  0.050 2z, 0060 Cs 0.090 k' 0300 RV
Istanbul 0.025 Cs 0.030 Cc 0.030 Cp 0.035 k' 0.035 k 0.140 RV
London 0.055 k 0.060 k' 0065 Cp 0075 Cc 0.085 z2 0.175 RV
Los Angeles 0.040 &k  0.060 k' 0065 2z 0075 Cp 0100 25  0.130 RV
Moscow 0.070 Cp 0.085 Cs 0.085 k 0.085 k' 0.100 Cc 0.350 RV
Paris 0.105 Cp 0120 Kk 0125 Cs 0130 k' 0.140 Cpj 0375 RV
Rome 0.050 Cp 0.060 C¢c 0.065 k 0.065 k' 0.085 Cs 0.215 RV
Sad Paolo  0.040 k 0040 k' 0045 Cp 0060 Cs 0.060 C§ 0320 RV
Sydney 0.040 Cp 0.040 Cc 0.065 Cs 0075 k0085 Cg,k 0.350 RV
Taipei 0.105 Cp 0.106 Cg 0.115 k 0.120 k' 0.120 Cc 0.240 RV
1 'l ' ' ' Berlin = theory for uncorrelated networks predicts that the value of
5%3& a2 the Molloy-Reed parameter x*), equation (2), can be used
0.9+ oh, Hogons + 1 to measure the distance to the percolation point x(*) =
. ":?é'fm. Istanbul o 2. We may therefore expect that networks with a higher
08F o ."V“&m Los Angeles - | value of x*) show higher resilience. T(? this enfi let us
TR Paris ~ first compare the values of ¢ for certain scenarios with
n C 'v';’“D".f"uA‘ o pome the value of k(®) for the unperturbed PTN. Before doing
0.7} ST e e Sydney 1] this let us note that for an uncorrelated network the value
o S T of k¥) can be equally represented by the ratio between
0.6 ST sy L, vl 1 the mean next neighbors number of a node z; (which is
N 1 \’f‘{{,v by definition equal to the mean node degree (k)) and the
TN b, e, T mean second nearest neighbors number zs:
03¢ 0.1 02 03 04 05

Fig. 5. (Color online) L-space. Random scenario. Size of the
largest cluster S normalized by its value at ¢ = 0 as function
of a fraction of removed nodes. From this figure it is easy to
define the fraction of nodes ¢s which satisfies equation (13).

single out those with the highest impact on each of the
PTNs considered. To this end, for each PTN we give in Ta-
ble 2 the segmentation concentration ¢y for the five most
harmful attack scenarios. The obtained values of c¢s are
given in increasing order. Near each value we denote the
scenario that was implemented. Our analysis reveals the
most harmful scenarios as those targeted at nodes with the
highest values of either the node degree k, the between-
ness centrality C'g, the next nearest neighbor number zo,
or the stress centrality Cg recalculated after each step of
the attack.

It is instructive to observe correlations between the
characteristics of unperturbed PTNs (see Tab. 1) and their
robustness to attacks. Such correlations may allow for an a
priory estimate of the resilience of a network with respect
to attacks. As discussed in the introduction, percolation

k) = 25/ 2. (14)
Indeed, given that for such a network (see e.g. [1])
2 = (k%) — (k), (15)
one can rewrite (3) as:
K5 =1 at  cpere (16)

The relation £* = k(*) 4 1 holds only approximately
for the real-world networks we consider in our study, as
one can see, e.g., from Table 1. In Figure 6a we com-
pare both quantities £(*), £(#) for unperturbed PTNs with
the corresponding segmentation concentration ¢y for the
random attack scenario. Within the expected scatter of
data one can definitely observe a general tendency of cg
to increase with both x*) and x(*): the higher the value
of k for an unperturbed network, the more robust it is
to random removal of its vertices. This conclusion, how-
ever with a more pronounced scatter of data even holds if
one repeats the same analysis for the case of the scenario
based on recalculated node degrees, as shown in Figure 6b.
Again, one observes ¢g to increase with increasing x. For
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Fig. 6. (Color online) L-space. Correlations between the ratio , equations (3), (14) and segmentation concentration c¢;. Open
circles: k® = (k?)/(k), filled circles: £*) = z5/z;. The lines serve as guides to observe the tendency of ¢, to increase for higher
values of k. (a) Random scenario. Most out-of-range are the points ¢ = 0.35, k*) = 2.54, k*) = 4.37 (Sydney) and ¢ = 0.35,
k) =6.25, kKM = 7.91 (Moscow). (b) Recalculated node-degree scenario. Two PTNs are out of range: ¢s = 0.04, k*) = 4.17,
k®) = 5.95 (Sab Paolo) and ¢, = 0.08, ) = 6.25, k™ = 7.91 (Moscow).
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Fig. 7. IL-space. Correlations between the node-degree distribution exponent 7 and segmentation concentration c,. Filled
circles: scale-free PTNs, open circles: PTNs with less pronounced power-law decay. Solid lines serve as guides to observe the
tendency of ¢s to decay with an increase of 7. (a) Random scenario. Most out of range are the points at cs = 0.24, v = (5.16)
(Taipei) and at ¢ = 0.35, v = 4.03 (Sydney). (b) Recalculated node-degree scenario. Most out of range are the points at
¢s = 0.04, v = 2.72 (Sao Paolo) and at ¢s = 0.115, v = (5.16) (Taipei).

the betweenness-based attack scenarios the data is even
more scattered and a prediction based on the a priori cal-
culated ratios is unreliable.

Another useful observation concerns the correlation
between the PTN attack resilience and the node-degree
distribution exponent v (4). As we have observed in the
previous studies [22,23] some of the PTNs under consid-
eration are scale-free: their node-degree distributions have
been fitted to a power-law decay (4) with the exponents
shown in Table 1. Others are characterized rather by an
exponential decay, but up to a certain accuracy they can

also be approximated by a power-law behavior (then, the
corresponding exponent is shown in Table 1 in brackets).
In Figure 7a we show the correlation between the fitted
node-degree distribution exponent v and c¢s for the ran-
dom attack scenario. Filled circles correspond to scale-free
PTNs, open circles correspond to the PTNs where the
scale-free behavior is less pronounced. It is interesting to
observe, that even if we include the PTNs which are bet-
ter described by the exponential decay of the node-degree
distributions, there is a notable tendency to find PTNs
with smaller values of v to be more resilient as indicated
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Fig. 8. (Color online) L-space. Average cumulative node degree distributions for the Paris PTN for the random attack scenario.
Comparison of the initial distribution (red curve, ¢ = 0) with those of the PTNs with ¢ = 0.03, ¢ = 0.05, ¢ = 0.1 (a). Average
cumulative node degree distribution together with statistical errors for ¢ = 0.03 (b), ¢ =0.05 (c), ¢ = 0.1 (d).

by larger values of cs. This tendency is again confirmed
if one considers the recalculated node degree attack sce-
nario, as shown in Figure 7b.

The above observed correlation between the exponent
~ that characterizes the unperturbed network (i.e. a PTN
at ¢ = 0) and the segmentation concentration ¢y at which
however the PTN is to a large part unperturbed indicates
that some global properties of the node-degree distribu-
tion may remain essentially unchanged when the nodes
are removed (i.e. a scale-free distribution remains scale-
free as ¢ increases, 0 < ¢ < ¢). To check that assumption
for the RV scenario, we analyzed the averaged cumulative
node degree distributions for each of the PTNs with 3, 5,
and 10% of removed nodes. The cumulative distribution
P(k) is defined in terms of the node-degree distribution

plg) (4) as:

with k™2 the maximal node degree in the given PTN.
Typical results of this analysis are shown in Figure 8, for
the PTN of Paris. We compare the cumulative node degree
distribution P(k) of the unperturbed PTN with that of the
PTN where a given fraction ¢ of the nodes (¢ = 0.03, 0.05,
and 0.1, correspondingly) was removed according to the
random attack scenario (RV). For each of the concentra-
tions of the removed nodes, P(k) was averaged over 2000
repeated attacks.

In the first plot, Figure 8a, we compare the three re-
sulting average distributions (for ¢ = 0.03, 0.05, and 0.1)
with the original one (¢ = 0). One clearly sees that there
is no qualitative or even quantitative (change of expo-
nent) change of the distributions for any of the three cases.
Indeed, if one has a large set of nodes with a given node-
degree distribution any sufficiently large random subset of
these nodes should have the same distribution; in partic-
ular this holds if one averages these subset distributions
over many instances. The above argument seems to ig-
nore the change of degrees in the subset due to cutting off
those vertices not remaining in the set. However, due to
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Table 3. Segmentation concentration cs for different attack scenarios applied to different PTNs in P-space. For each city,
the table shows the five most effective attack scenarios ordered by increasing values of c¢s. The scenario is indicated after
corresponding value of ¢s. The scenarios are abbreviated by the name of the characteristics used to prepare the lists of removed
nodes (see Sect. 2 for detailed explanation). In the last column the value of ¢ for the random scenario (RV) is shown.

City Cs Cs Cs Cs Cs Cs

Berlin 0.155 Cs 0.175 Cc 0215 Cs 028 C° 0290 C4% 0.490 RV
Dallas 0.065 Cp 0.075 Cec 0.095 Cs 0115 C  0.130 ok 0.490 RV
Diisseldorf  0.160 Cs 0.185 Cs 0255 Co 0295 C' 0.300 k* 0.495 RV
Hamburg 0.050 Co 0.065 Cp 0145 Ce 0170 C 0175 CL 0490 RV
Hong Kong  0.285 Ch 0295 Cs 0335 Cc 0365 C  0.380 ct 0.505 RV
Istanbul 0.060 Ceo 0.060 Cp 0.060 C% 0.115 C& 0.175 C 0.500 RV
London 0.155 Cp 0.205 Cc 0305 Ce 0330 C  0.350 ct 0.495 RV
Los Angeles  0.065 Cg 0.095 Cc 0145 Cs 0145 Cg5 0.150 C 0.480 RV
Moscow 0.175 Cs 0.255 Cc 0285 Cs 0345 C 0395 C°C5 0495 RV
Paris 0.115 Ch 0165 Cs 0215 Cec 0235 C% 0.240 C,C* 0500 RV
Rome 0.135 Ceo 0.160 Cp 0225 Ce 0285 Cs 0.305 C 0.495 RV
Sad Paolo 0.205 Cp,Cc 0240 Cs 0355 Cg 0365 C  0.390 ok 0.500 RV
Sydney 0.075 Co 0.085 Cp 0105 Cs 0225 C  0.240 ok 0.510 RV
Taipei 0.290 Ch 0320 Cs 0370 Cc 0430 Cg 0440 k,Cy 0495 RV

the random choice of the removed nodes the share of lost
degree will on the average be proportional to the degree
of each vertex: the higher its degree the more probable
it is that one of its neighbors is chosen to be removed
and this probability is proportional to its degree. Thus,
the sum of degrees in the remaining subset is lower; but
the degree distribution P(k) is effectively transformed to
P'(ck) = nP(k) where ¢ is the probability of any node be-
ing removed and P’(k) is the distribution in the remain-
ing subset of nodes, n a normalization. For an exponential
distribution this transformation shifts the scale. However,
a scale free distribution keeps its exponent under such a
transformation.

In the other three plots, Figures 8b-8d we show for
each amount of removed nodes the average cumulative
distribution together with statistical errors calculated as
the standard deviation within the ensemble of the 2000 in-
stances generated in the sample. Even on the logarithmic
scale these are very small for all but the very high degrees
where fluctuations of small numbers of often less than one
node for a given degree occur.

4 Results in P-space

Let us complement the IL-space analysis performed above
by observing the reaction of PTN graphs under attack
when one observes them in another representation. In par-
ticular, we will investigate IP-space graphs.

First let us recall that in this representation each node
corresponds to a PTN station, i.e. it has the same interpre-
tation as in the IL-space. However, the interpretation of a
link differs from that in the IL-space: now all station-nodes
that belong to the same route are connected and thus each
route enters the P-space network as a complete subgraph.
This results in the main peculiarity of the interpretation
of the behavior under attacks of these graphs. Consider as

an example the PP-space graph of Figure 1c and compare
it to the original PTN map, Figure la. Whereas the re-
moval of station node C in the map (Fig. 1a) disconnects
the nodes B and D, the removal of the same node in the
P-space (Fig. 1c) keeps nodes B and D connected, as far
as they still belong to the same route. Therefore, the re-
moval of nodes in P-space, performed either in a random
way or according to certain lists, has a different interpre-
tation in comparison to that occurring in the IL-space. An
interpretation of the removal of nodes in P-space is the
following: if a node is removed, the corresponding stop
of the route is canceled while the route otherwise keeps
operating. If in the above example the station-node C is
removed, route No. 2 still keeps operating and station-
node B can be reached from D, only without stopping at
C (e.g. the bus takes a shortcut). In this way, as we will
see below, the removal of nodes in P-space allows us to
gain additional insight into the PTN structure.

As in the case of the IL-space representation, we study
the resilience of the P-space PTN graphs to attacks per-
formed following the sixteen different scenarios defined in
Section 3. In Figure 9 we show the change of the size of the
largest cluster S (a) and the average inverse mean short-
est path length (/~1) (b) under random attacks (RV). If
one compares this behavior with that observed for the RV
scenario in IL-space (see Fig. 2) one sees, that all PTNs
under consideration react in a much more homogeneous
way. In IL-space random attacks lead to changes of the
largest connected component S that range from an abrupt
breakdown (Dallas) to a slow smooth decrease (Paris). In
IP-space one observes for the same scenario only a decrease
of S which corresponds to the number of removed nodes.
No break-down of this cluster occurs in this scenario. The
value of S(c¢s) defined by the condition (13) is given in the
last column of Table 3. It is worth to note, that the behav-
ior of the mean inverse shortest path length (/=1 as func-
tion of the fraction ¢ of disabled nodes is also qualitatively
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Fig. 9. (Color online) P-space. Random scenario. (a) size of the largest cluster S and (b) the average inverse mean shortest
path length (£7') as functions of the fraction of removed nodes ¢ normalized by their values at ¢ = 0.
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Fig. 10.
betweenness scenario (recalculated).

different between the two RV scenarios in L- (Fig. 2b)
and P- (Fig. 9b) spaces. In L-space (/~!) decreases in
general faster than linearly indicating an increase of the
path length between the nodes as well as partitioning of
the network. In P-space (/~!) remains for a large part
unperturbed as the nodes of the complete subgraph re-
main essentially connected and the shortest path lengths
remain almost unchanged until only a small fraction of the
network remains.

To further detail the situation, similar as in Section 3,
we summarize in Table 3 the outcome of the five most
harmful attack scenarios and compare those with the ran-
dom attack scenario. As it follows from the table and
as is further supported by Figure 10, the betweenness-
targeted scenarios appear to be the most harmful. Fol-
lowing this observation let us investigate the role of the
highest betweenness nodes: above all these are the nodes
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(Color online) P-space, size of the largest cluster S at (a): highest degree scenario (recalculated), (b) highest

(and not the highest-k hubs) that control the PTN be-
havior under attack. The IP-space degrees of these high-
betweenness nodes do not essentially differ from those of
the hubs, therefore they cannot be easily distinguished
from the other nodes during attacks according to highest-
k scenario. To support this assumption, let us recall that
in the P-space representation each route enters the overall
network as a complete subgraph, with all nodes intercon-
nected. Removing nodes from a complete graph does not
lead to any segmentation. The decrease of the normal-
ized size of this graph will be given by the exact formula
S =1 — ¢ (which is — almost — reproduced by the RV sce-
nario, cf. Figure 9a). Under such circumstances a special
role is played by those nodes that join different complete
graphs (different routes). The removal of such nodes will
separate different complete routes and as a result may
lead to network segmentation. Naturally, being between
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path length (fp) and segmentation concentration c¢s in the
highest betweenness centrality scenario. The line serves as a
guide to observe the tendency of ¢s to decrease with increasing

(Cp).

different complete subgraphs such nodes are characterized
by high centrality indices, as observed above. Moreover,
as far as their direct neighbors belong to different com-
plete graphs, these neighbors are not connected between
each other resulting in a lower value of the clustering
coefficient C'. From Table 3 one sees that attacks based
on choosing nodes with low-C' values are very effective in
P-space.

To conclude this section, we ask the question if a sim-
ple criterion can be found that allows to predict a priori
the P-space PTN vulnerability. Namely, given the general
PTN characteristics (see Tab. 1) can one forecast resilience
against attacks in P-space? The answer is given by the ob-
servation that the networks with low mean shortest path
length (¢p) are the best connected in PP-space and hence
may be expected to be less vulnerable. Indeed, on the one
hand, for the above example of a complete graph (a single
PTN route) (¢p) = 1 and it is extremely robust to P-space
attacks. On the other hand, a high value of ({p) indicates
numerous intermediate nodes between different routes. As
we have checked above, the targeted removal of such nodes
leads to rapid network segmentation. In support of the
above reasoning, in Figure 11 we plot ¢ as function of
(fp) for attacks based on the highest betweenness central-
ity scenario. There, within the expected scatter of data
one observes a clear evidence of the decrease of ¢, with
(lp), i.e. networks with higher mean path length break
down at smaller values of ¢ and are thus more vulnerable.

It is worth to note here, that in P-space it is only
the RV attack that has very similar impact on all PTNs
(see Fig. 9). As we have just observed, similar to the
IL-space also in P-space the PTNs manifest different level
of robustness against attacks targeted on the most impor-
tant nodes. However, the order of vulnerability changes
if one compares the outcome of the IL-space and IP-space
attacks. This means that PTNs that were vulnerable in
the IL-space may appear to be robust against attacks in
P-space. From Table 3 we see that the PTNs that are most
stable against highest C'p-targeted attacks in P-space are

The European Physical Journal B

the PTNs of Hong Kong, Saé Paolo, and Moscow, with
cs = 0.285, 0.205, and 0.175, correspondingly. When at-
tacked in IL-space, the PTN of Moscow keeps its robust-
ness: ¢ = 0.07 during Cp-targeted attack, which is one
of the highest ¢q values for the IL-space, see Table 2. This
is however not the case for the PTNs of Hong Kong and
Sao Paolo. In IL-space, these belong to the most vulnerable
PTNs.

5 Conclusions and outlook

In this paper, we have studied the behavior of city pub-
lic transportation networks (PTNs) under attacks. In our
analysis we have examined PTNs of fourteen major cities
of the world. The principal motivation behind this study
was to observe the behavior under attack of a sample of
networks that were constructed for the same purpose, to
compare these with available analytical results for perco-
lation of complex networks, and possibly to derive some
conclusions about correlations between PTN characteris-
tics calculated a priory and the resilience to attacks. Fur-
thermore, the resilience behavior of a network against dif-
ferent attack scenarios gives additional insight into the
network architecture, discovering structures on different
scales. This approach has been termed the ‘tomography’
of a network [14].

In our study we have also attempted to compare our
results with the predictions of percolation theory on net-
works. Due to the sizes of these systems which are far from
the thermodynamic limit and the rather small sample
of networks no quantitative comparison appeared possi-
ble. However, qualitative predictions about the location of
segmentation thresholds and thus the vulnerability could
be verified. Although our study was not primarily moti-
vated by applications, some of the results and methods
developed within this study may be useful for planning
and risk assessment of PTNs. Our analysis has identified
PTN structures which are especially vulnerable and oth-
ers, which are particulary resilient against attacks. Further
investigation of other relevant network properties may re-
veal mechanisms behind this structural resilience [31]. Fur-
thermore we note that the methods developed here also
allow to identify minimal strategies to obstruct the opera-
tion of the PTN of a city e.g. for the purposes of industrial
action and possibly achieve a successful end of a social
conflict.

To analyze PTN resilience we have applied different at-
tack scenarios, that range from random failure to targeted
destruction, when the most influential network nodes are
removed according to their operating characteristics. To
choose the most influential nodes, we have used different
graph theoretical indicators and determined in such a way
the most effective attack scenarios. Our work shows that
even within a sample of networks all created for the same
purpose one observes essential diversity with respect to
their behavior under attacks of various scenarios. Results
of our analysis show that PTNs demonstrate a rich variety
of behavior under attacks, that range from smooth decay
to abrupt change.
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Concerning random scenarios we have also verified
a self-averageing effect that results in a suppression of
deviations between different random scenarios and a
stability of the network degree distribution against mod-
erate impact of random attacks.

As shown by our study, the impact of attacks may be
measured by different quantities. As a criterion that is
well defined and easily reproducible we choose to define
the segmentation concentration cs to correspond to the
situation where the largest remaining cluster contains one
half of the original nodes of the network. Let us note as
well, that definitely not all of the PTNs analyzed demon-
strate scale-free behavior in P-space (and even less in
LL-space). Nevertheless, in spite of the diversity of behav-
ior we clearly see common tendencies in their reaction to
attacks. In particular, this enabled us to propose crite-
ria that allow an a priori estimate of PTN robustness.
In LL-space resilience is indicated by a high value of the
Molloy-Reed parameter &, equations (2), (14) or by a small
value of the exponent 7, if a power law is observed for the
PTN node degree distribution, in IP-space high resilience
is indicated by a small mean shortest path length (/p).

One of possible continuations of our study will be the
analysis of PTN resilience in other graph representations,
than those that were described above.
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