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We study the universal characteristics of the shape of a polymer chain in an environment with correlated
structural obstacles, applying the field-theoretical renormalization group approach. Our results qualita-
tively indicate an increase of the asymmetry of the polymer shape in crowded environment comparing
with the pure solution case.
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1. Introduction

In studying the transport properties of polymer fluids, an im-
portant role is played by the shape characteristics of a single
polymer chain configuration. It is established [1,2], that the typi-
cal polymer chain realization does not possess spherical symmetry.
A quantity, which characterizes the asymmetrical shape of a poly-
mer chain, is the asphericity ratio Âd of the chain configuration.
Âd attains a maximal value of one for a completely stretched,
rod-like configuration, and equals zero for the spherical form (see
Fig. 1), thus obeying the inequality: 0 � Âd � 1. In the limit of long
chains this quantity appears to be universal and depends on space
dimension d only: Âd > 1/2 at d < 4, Âd = 1/2 at d � 4. The size
measure of a flexible polymer chain is usually defined by either
the mean-squared end-to-end distance Re or radius of gyration RG .
The ratio of these quantities, the so-called size ratio g ≡ 〈R2

e 〉/〈R2
G 〉

again is an universal quantity (g > 6 for d < 4, g = 6 for d � 4).
The study of these universal quantities characterizing the polymer
shape is a subject of a great interest [3–6].

A current problem in polymer physics is the influence of struc-
tural obstacles (impurities) in the environment on the universal
properties of macromolecules. Such a disordered (crowded) envi-
ronment can be found, in particular, in a biological cell, composed
of many different kinds of biochemical species, which may oc-
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Fig. 1. Schematic presentation of a polymer configurations with aspericity ratio Âd

value close to one (a) and close to zero (b).

cupy a large fraction of the total volume [7]. In the language of
lattice models of polymers, the crowded environment with struc-
tural obstacles can be considered as a disordered lattice, where a
given fraction of randomly chosen sites are to be avoided by the
polymer chain. It has been proven both analytically [8] and nu-
merically [9], that weak uncorrelated disorder that corresponds to
the point-like randomly distributed obstacles with concentration
far from the percolation threshold does not change the universality
class of polymers. In the present study, we address a model, where
the structural obstacles of the environment are spatially correlated
on a mesoscopic scale [10]. Following Ref. [11], this case can be
described by assuming the defects to be correlated on large dis-
tances r according to a power law with a pair correlation function
h(r) ∼ r−a . For a < d such a correlation function describes de-
fects extended in space (see [11,12] for further details). The impact
of long-range-correlated disorder on the scaling of single polymer
chains has been analyzed in previous works [12] by means of the
field-theoretical renormalization group (RG) approach. The intrigu-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:viktoria@icmp.lviv.ua
mailto:c.vonferber@coventry.ac.uk
mailto:hol@icmp.lviv.ua
http://dx.doi.org/10.1016/j.physleta.2010.03.037


2862 V. Blavatska et al. / Physics Letters A 374 (2010) 2861–2864
ing question of how the shape characteristics of a flexible chain
are influenced by presence of such a disordered medium remains,
however, still unresolved, and is the subject of the present study.

The layout of the Letter is as follows. In the next section, we
describe the model of the flexible polymer chain in a crowded
environment, develop its field-theoretical formulation and give a
brief description of the field-theoretical RG approach. The results
of its application to the present model and finally some conclu-
sions and an outlook are given in the following sections.

2. Field-theoretical description of the model

Let �Rn = {x1
n, . . . , xd

n} be the position vector of the nth monomer
of the polymer chain (n = 1, . . . , N). The shape of a specific con-
formation of the chain can be characterized [2] in terms of the
gyration tensor Q with components:

Q ij = 1

2N2

N∑
n,m=1

(
xi

n − xi
m

)(
x j

n − x j
m
)
, i, j = 1, . . . ,d. (1)

For the averaged radius of gyration RG one thus has:

〈RG〉 = 1

2N2

〈
N∑

n,m=1

|�Rn − �Rm|2
〉

=
〈

d∑
i=1

Q ii

〉
= 〈Tr Q 〉. (2)

Here and below, 〈. . .〉 denotes averaging over all configurations of
the polymer chain. The spread in eigenvalues λi of the gyration
tensor measures the asymmetry of a given configuration. In Ref. [5]
it was proposed to characterize the shape of macromolecule by ra-
tios of rotationally invariant polynomials in the components of Q .
Let us define the asphericity ratio Âd as the quotient of two aver-
aged quantities [5]:

Âd = 1

d(d − 1)

d∑
i=1

〈(λi − λ̄)2〉
〈(λ̄)2〉 = d

d − 1

〈Tr Q̂2〉
〈(Tr Q )2〉 . (3)

Here, λ̄ ≡ Tr Q /d is the mean eigenvalue of gyration tensor for a
given chain configuration and Q̂ ≡ Q − λ̄I with the unity matrix I.
Âd equals zero when all configurations are spherical (eigenvalues
of each given configuration are equal) and takes the maximal value
of one when all configurations are rod-like (all the eigenvalues
equal zero except one). Besides the ratio of averages one may also
calculate the so-called mean asphericity, given by an average of
the ratio [13]. While Ref. [13] has shown some slight quantita-
tive deviations between the two approaches it confirmed that the
qualitative dependence with respect to other parameters, e.g. on
the architecture of the molecule is the same in each case.

Passing from the discrete model to a continuous polymer chain
description [14] allows to derive a field-theoretical formulation of
the asymptotic shape characteristics of a single polymer chain in
an environment with correlated structural obstacles. Applying the
replica method in order to average the free energy over differ-
ent configurations of the randomly distributed and fixed obstacles
leads to an m-component field theory with a Lagrangian LDis [12]:

LDis = 1

2

n∑
α=1

∫
ddx

[(
μ̂2

0

∣∣ �φα(x)
∣∣2 + ∣∣∇ �φα(x)

∣∣2) + u0

4!
( �φ2

α(x)
)2

]

−
n∑

α,β=1

∫
ddx dd y h

(|x − y|) �φ2
α(x) �φ2

β(y). (4)

Here each replica �φα is an m-component vector field �φα =
(φ1

α, . . . , φm
α ), μ̂0 and u0 are bare mass and coupling, the coupling

of the replicas is described by the correlation function h(r) ∼ r−a

and both the polymer (m → 0) and the replica (n → 0) limits are
implied. For small k, the Fourier-transform h̃(k) of h(r) behaves as:
h̃(k) ∼ v0 + w0|k|a−d . Taking this into account, rewriting Eq. (4)
in the momentum space, and recalling special symmetry peculiar-
ities of (4) that appear for m, n → 0 [12], a theory with two bare
couplings u0, w0 results. Note that for a � d the w0-term is irrel-
evant in the RG sense and one restores the pure case (absence of
structural defects).

As shown in Ref. [5], computing the shape parameters of long
polymer chain can be reduced to computing the critical ampli-
tudes and exponents of the corresponding field-theoretical model.
In order to extract the scaling behavior of the model (4) we
apply the RG method [15] to get the Green’s functions G(L,N)

R
renormalized at non-zero mass and zero external momenta. The
change of couplings u0, w0 under renormalization defines a flow
in the parametric space, governed by corresponding β-functions:
βu(u, w) = ∂u

∂ ln�
|0, βw(u, w) = ∂ w

∂ ln�
|0, where l is the rescaling fac-

tor, and |0 stands for evaluation at fixed bare parameters. The fixed
points (FPs) u∗ , w∗ of the RG transformation are given by common
zero of β-functions. The stable FP corresponds to the critical point
of the system.

Following Ref. [5], the averaged moments of the gyration ten-
sor Q needed to determine the polymer shape characteristics (2)
and (3) can be expressed in terms of the connected Green’s func-
tion. In particular:

〈Q ij〉 = −1

2

(
DT

2 X̄

)2ν
	(γ )

	(γ + 2ν + 2)

Gij

G(2)
R (0,0, {λ∗})

, (5)

〈Q ij Q kl〉 = −1

4

(
DT

2 X̄

)4ν
	(γ )

	(γ + 4ν + 4)

Gij|kl

G(2)
R (0,0, {λ∗})

, (6)

where D , T , X̄ are non-universal quantities which will drop out in
the final expressions, 	(x) is the Euler gamma-function, ν and γ
are the critical exponents of model (4), and the following notations
are used:

Gij ≡
(

∂

∂qi

∂

∂q j
G(2,2)

R

(
0,0;q,−q;{λ∗}))∣∣∣∣{q}=0

, (7)

Gij|kl =
(

∂

∂qi
1

∂

∂q j
1

∂

∂qk
2

∂

∂ql
2

× G(2,4)
R

(
0,0;q1,−q1,q2,−q2;

{
λ∗}))∣∣∣∣{q}=0

. (8)

Here G(2,2)
R (0,0;q,−q; {λ∗}) and G(2,4)

R (0,0;q1,−q1,q2,−q2; {λ∗})
are the fixed point values of the renormalized two-point con-
nected Green’s functions with two and four φ2-insertions, the
symbol |{q}=0 indicates that the corresponding expressions are to
be taken at all external momenta {q} equal to zero.

The isotropy of the model implies, in particular, that 〈Tr Q 〉 =
d〈Q xx〉, so that:

〈RG〉 = d〈Q xx〉. (9)

For the mean-squared end-to-end distance 〈R2
e 〉 one has [5]:

〈R2
e 〉 = −

(
DT

2 X̄

)2ν
	(γ )

	(γ + 2ν)

(∇2
k G(2)

R (k,−k, {λ∗}))|k=0

G(2)
R (0,0, {λ∗})

, (10)

where ∇2
k means differentiation over components of external mo-

ment k. The not-universal quantities cancel when the ratio g =
〈R2

e 〉/〈R2
G 〉 is considered:

g = 2	(γ + 2ν + 2)

	(γ + 2ν)

(∇2
k G(2)

R (k,−k, {λ∗}))|k=0

(∇2G(2,4)
(0,0;q,−q; {λ∗}))|

(11)

q R q=0
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and thus the size ratio is universal quantity. The asphericity ratio
Âd can be expressed in terms of the averaged moments of gyration
tensor (5), (6) as follows:

Âd = 〈Q 2
xx〉 + d〈Q 2

xy〉 − 〈Q xx Q yy〉
〈Q 2

xx〉 + d(d − 1)〈Q xx Q yy〉
. (12)

One can again easily convince oneself, that all non-universal quan-
tities in Eqs. (5), (6) cancel when calculating (12), and Âd is a
universal quantity.

Formulas (11) and (12) are used next in estimating the corre-
sponding universal quantities.

3. Results

To obtain the qualitative characteristics of the critical behav-
ior of the model, we exploit a double expansion in the parameters
ε = 4 − d and δ = 4 − a, assuming them to be of the same or-
der of magnitude. Within this approach it was shown [12], that
a single polymer chain in a solvent in an environment with long-
range-correlated structural obstacles belongs to a universality class
different from the case of a pure solvent. In the field-theoretical
renormalization group description, this is reflected by the appear-
ance of a new non-trivial stable long-range-correlated (LR) fixed
point besides the usual (pure) one. The coordinates of these FPs
and their regions of stability read [12]:{

pure FP: u∗ = 3ε
4 , w∗ = 0 at δ < ε/2,

LR FP: u∗ = 3δ2

2(δ−ε)
, w∗ = 3δ(ε−2δ)

2(ε−δ)
at ε/2 < δ < ε.

(13)

To estimate the size ratio (11) for the case of a polymer in long-
range-correlated disorder, we calculate the function G(2,2)

R (0,0;
q,−q; u, w) with two insertions φ2(q), φ2(−q). In the first order
of the ε = 4 − d, (δ = 4 − a)-expansion we find:

G(2,2)
R (0,0;q,−q; u, w)

= 2

q2 + 1
− 4

3

1

q2 + 1
[uI1 − w J1] − 2

3
[uI2 − w J2]

+ 4

3

1

q2 + 1
[uI0 − w J0]. (14)

Here Ii , J i are given by the following one-loop integrals:

I0 =
∫

d�p
(p2 + 1)2

, J0 =
∫

d�p |p|a−d

(p2 + 1)2
, (15)

I1 =
∫

d�p
(p2 + 1)((p + q)2 + 1)

,

J1 =
∫

d�p |p|a−d

(p2 + 1)((p + q)2 + 1)
, (16)

I2 =
∫

d�p
(p2 + 1)2((p + q)2 + 1)

,

J2 =
∫

d�p |p|a−d

(p2 + 1)2((p + q)2 + 1)
. (17)

To evaluate g according to Eq. (11), we perform the derivation of
G(2,2)

R with respect to the components of the vector q and expand
the loop integrals in ε and δ. Further inserting the FP values (13)
we finally receive:

g =
{

gpure = 6 + ε
16 , δ < ε/2,

gLR = 6 + δ
8 , ε/2 < δ < ε.

(18)

Let us qualitatively estimate the change in the size ratio g , caused
by presence of the structural obstacles, in three dimensions. Sub-
stituting directly ε = 1 into the first line of (18), we have for the
polymer chain in a pure solvent: gpure 
 6.06. Let us recall, that
the influence of the long-range-correlated disorder is relevant for
a � d (δ � ε) (see e.g. explanation after Eq. (4)). Estimates of gLR

can be evaluated by direct substitution of continuously changing
parameter δ into the second line of Eq. (18). One concludes, that
increasing the parameter δ (which corresponds to an increase of
strength of disorder) leads to corresponding increase of the ratio
of the end-to-end to the gyration radii g .

To compute the averaged asphericity ratio using (12), we cal-
culate the function G(2,4)

R (0,0;q1,−q1,q2,−q2; u, w) with four
insertions φ2(q1), φ2(−q1), φ2(q2), φ2(−q2). The resulting expan-
sion is too cumbersome to be presented here and will be given
elsewhere [16]. Performing the derivatives with respect to the
components of the vectors q1, q2 we find:

Gxx = 576 + 4028

15
(u − w),

Gxx|yy = 320 + 436

3
(u − w),

Gxy|xy = 128 + 308

5
(u − w). (19)

Inserting the FP values (13) into Eqs. (19) and recalling the defini-
tions (5) and (6) the result is:

Âd =
{

Âpure
d = 1

2 + 15
512ε, δ < ε/2,

ÂLR
d = 1

2 + 1
48ε + 13

768δ, ε/2 < δ < ε.
(20)

Again, let us qualitatively estimate the change in Âd caused by the
presence of structural obstacles in three dimensions. Substituting
directly ε = 1 into the first line of (20), we have for the pure case:
Âpure

d 
 0.53. Estimates of ÂLR
d can be obtained by direct substitu-

tion of the continuously changing parameter δ into the second line
of Eq. (20). Increase of the strength of disorder correlations results
in increase of the asphericity ratio of polymers in disorder. This
phenomenon can be intuitively understood if one recalls an im-
pact of the long-range-correlated disorder on the mean end-to-end
distance exponent ν . Indeed, it has been shown in [12], that such
a disorder leads to an increase of ν , and subsequently, to further
swelling of the polymer chain. Extended obstacles disfavor return
trajectories and as a result the polymer chain becomes more elon-
gated. This elongation then leads to an increase of the asphericity
ratio as predicted by Eq. (20).

4. Conclusions and outlook

The universal characteristics of the average shape of a polymer
coil configurations in a porous (crowded) environment with struc-
tural obstacles have been analyzed considering the special case,
when defects are correlated at large distances r according to the
power law: h(r) ∼ r−a . Applying the field-theoretical RG approach,
we estimate the size ratio g = 〈R2

e 〉/〈R2
G 〉 and averaged asphericity

ratio Âd up to the first order of a double ε = 4−d, δ = 4−a expan-
sion. We have revealed, that the presence of long-range-correlated
disorder leads to an increase of both g and Âd as compared to
their values for a polymer chain in a pure solution. Moreover, the
asphericity ratio Âd value was found to be closer to the maximal
value of one in presence of correlated obstacles. Thus, we con-
clude, that the presence of structural obstacles in an environment
makes the polymer coil configurations to be less spherical. Let us
note that the present results, obtained in the first order of an ε,
δ-expansion should serve as a qualitative estimate rather than an
accurate numerical evaluation. The next step in our analysis will
be to obtain the higher order expansions for the quantities of in-
terest and to perform computer simulations in order to confirm
these theoretical results by numerical values. Further details of our



2864 V. Blavatska et al. / Physics Letters A 374 (2010) 2861–2864
calculations as well as a generalization of the presented results to
the case of polymers with complex topology will be given else-
where [16].
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